论文标题

磁场对于第一颗恒星的初始质量功能的重要性

The importance of magnetic fields for the initial mass function of the first stars

论文作者

Sharda, Piyush, Federrath, Christoph, Krumholz, Mark R.

论文摘要

磁场对于局部和高红移星系中恒星的形成起着重要作用。在第一个暗物质光环中对发电机扩增的最新研究表明,在15及以上的红移宇宙中第一颗恒星形成期间,可能存在明显的磁场。在这项工作中,我们研究了这些磁场如何可能影响第一批恒星的初始质量功能(IMF)。我们对原始云的塌陷进行了200个高分辨率,三维(3D),磁性流动力学(MHD)模拟,具有不同的初始湍流磁场强度,如早期宇宙中的湍流动力学所预测的,总共形成了超过1100颗恒星。我们在存在强磁场的情况下检测到抑制碎片的强统计特征,从而导致质量足够低的第一颗恒星的数量急剧减少,以至于可以预期它们可以生存到今天。此外,强场将恒星从主要单身到大多数到更高质量的过渡点移动。但是,无论野外强度如何,单个模拟都高度混乱,显示出不同的碎片化和聚类水平,结果取决于原始云中湍流的确切实现。尽管这些仍然是宇宙学初始条件开始的理想化模拟,但我们的工作表明,磁场对原始IMF起着关键作用,甚至比当今的IMF更可能更重要。

Magnetic fields play an important role for the formation of stars in both local and high-redshift galaxies. Recent studies of dynamo amplification in the first dark matter haloes suggest that significant magnetic fields were likely present during the formation of the first stars in the Universe at redshifts of 15 and above. In this work, we study how these magnetic fields potentially impact the initial mass function (IMF) of the first stars. We perform 200 high-resolution, three-dimensional (3D), magneto-hydrodynamic (MHD) simulations of the collapse of primordial clouds with different initial turbulent magnetic field strengths as predicted from turbulent dynamo theory in the early Universe, forming more than 1100 first stars in total. We detect a strong statistical signature of suppressed fragmentation in the presence of strong magnetic fields, leading to a dramatic reduction in the number of first stars with masses low enough that they might be expected to survive to the present day. Additionally, strong fields shift the transition point where stars go from being mostly single to mostly multiple to higher masses. However, irrespective of the field strength, individual simulations are highly chaotic, show different levels of fragmentation and clustering, and the outcome depends on the exact realisation of the turbulence in the primordial clouds. While these are still idealised simulations that do not start from cosmological initial conditions, our work shows that magnetic fields play a key role for the primordial IMF, potentially even more so than for the present-day IMF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源