论文标题

弱对抗网络逆问题的数值解决方案

Numerical Solution of Inverse Problems by Weak Adversarial Networks

论文作者

Bao, Gang, Ye, Xiaojing, Zang, Yaohua, Zhou, Haomin

论文摘要

我们认为一种弱的对抗网络方法可以在数值上解决一类反问题,包括电阻抗层析成像和动态电阻抗层析成像问题。我们利用给定反问题中PDE的弱公式,并将解决方案和测试功能作为深神经网络进行参数化。弱公式和边界条件会引起网络参数的鞍函数的最小问题。由于参数被替代更新,网络逐渐近似逆问题的解决方案。我们提供了有关拟议算法收敛性的理论理由。我们的方法完全不含网格,而无需任何空间离散化,并且特别适合具有高维度和较低规律性的问题。关于各种测试反问题的数值实验证明了我们方法的准确性和效率。

We consider a weak adversarial network approach to numerically solve a class of inverse problems, including electrical impedance tomography and dynamic electrical impedance tomography problems. We leverage the weak formulation of PDE in the given inverse problem, and parameterize the solution and the test function as deep neural networks. The weak formulation and the boundary conditions induce a minimax problem of a saddle function of the network parameters. As the parameters are alternatively updated, the network gradually approximates the solution of the inverse problem. We provide theoretical justifications on the convergence of the proposed algorithm. Our method is completely mesh-free without any spatial discretization, and is particularly suitable for problems with high dimensionality and low regularity on solutions. Numerical experiments on a variety of test inverse problems demonstrate the promising accuracy and efficiency of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源