论文标题
量子线性空间和cartan类型的有限GK维尼古尔代数
Finite GK-dimensional pre-Nichols algebras of quantum linear spaces and of Cartan type
论文作者
论文摘要
我们研究量子线性空间和具有有限GK维数的cartan类型的尼古尔代数。我们证明,在仅涉及第2、3、4、6阶的根的简短列表中,任何此类尼古尔人代数都是通过gencini-procesi量子组引入的杰出前尼古尔代数的商。有两个新的示例,其中一个可以将其视为$ g_2 $,其中第三个根是一个。
We study pre-Nichols algebras of quantum linear spaces and of Cartan type with finite GK-dimension. We prove that out of a short list of exceptions involving only roots of order 2, 3, 4, 6, any such pre-Nichols algebra is a quotient of the distinguished pre-Nichols algebra introduced by Angiono generalizing the De Concini-Procesi quantum groups. There are two new examples, one of which can be thought of as $G_2$ at a third root of one.