论文标题

方向依赖电动传输和带填充孔共掺杂的外延钻石膜

Orientation-dependent electric transport and band filling in hole co-doped epitaxial diamond films

论文作者

Piatti, Erik, Pasquarelli, Alberto, Gonnelli, Renato S.

论文摘要

Diamond是一种众所周知的宽带绝缘子,在用硼替代碳的替代掺杂后成为低温超导体。然而,硼掺杂引入的有限的硼溶解度和明显的晶格障碍阻止了理论上预测的高温超导性。在这里,我们基于离子门控和硼替代的结合,在(111)和(110)面向面向的单晶体的氢化薄膜中提出了一种替代共掺杂方法。栅极依赖性的电动传输测量表明,硼掺杂的作用在很大程度上取决于晶体方向。在(111)表面中,它强烈抑制电荷载体迁移率并适度增加栅极诱导的掺杂,而在(110)表面中,它强烈增加了栅极诱导的掺杂,而迁移率中等降低。在这两种情况下,最大总载流子密度保持在$ 2 {\ cdot} 10^{14} \,$ cm $^{ - 2} $中,比高温超导性的理论值低三倍。密度功能理论的计算表明,这种强烈方向依赖性效应是由于两个表面中状态密度的特定能量依赖性。我们的结果允许确定两个表面孔散射寿命的带填充和掺杂依赖性,显示在(110)表面和(111)表面中(110)表面和重新输入绝缘体到金属过渡中的沮丧绝缘体对金属过渡的发生。

Diamond, a well-known wide-bandgap insulator, becomes a low-temperature superconductor upon substitutional doping of carbon with boron. However, limited boron solubility and significant lattice disorder introduced by boron doping prevent attaining the theoretically-predicted high-temperature superconductivity. Here we present an alternative co-doping approach, based on the combination of ionic gating and boron substitution, in hydrogenated thin films epitaxially grown on (111)- and (110)-oriented single crystals. Gate-dependent electric transport measurements show that the effect of boron doping strongly depends on the crystal orientation. In the (111) surface, it strongly suppresses the charge-carrier mobility and moderately increases the gate-induced doping, while in the (110) surface it strongly increases the gate-induced doping with a moderate reduction in mobility. In both cases the maximum total carrier density remains below $2{\cdot}10^{14}\,$cm$^{-2}$, three times lower than the value theoretically required for high-temperature superconductivity. Density-functional theory calculations show that this strongly orientation-dependent effect is due to the specific energy-dependence of the density of states in the two surfaces. Our results allow to determine the band filling and doping-dependence of the hole scattering lifetime in the two surfaces, showing the occurrence of a frustrated insulator-to-metal transition in the (110) surface and of a re-entrant insulator-to-metal transition in the (111) surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源