论文标题

超越辍学:特征图失真以使深度神经网络正常

Beyond Dropout: Feature Map Distortion to Regularize Deep Neural Networks

论文作者

Tang, Yehui, Wang, Yunhe, Xu, Yixing, Shi, Boxin, Xu, Chao, Xu, Chunjing, Xu, Chang

论文摘要

深度神经网络通常由大量可训练的参数组成,用于从给定数据集中提取强大的功能。一方面,大量可训练的参数可显着提高这些深网的性能。另一方面,它们带来了过度拟合的问题。为此,基于辍学的方法可在训练阶段禁用输出特征图中的某些元素,以减少神经元的共同适应。尽管这些方法可以增强所得模型的概括能力,但常规的二进制辍学并不是最佳解决方案。因此,我们研究了与深神经网络中间层相关的经验ademacher复杂性,并提出了一种用于解决上述问题的特征失真方法(删除)。在培训期间,特征图中随机选择的元素将通过利用限制的概括误差来代替特定值。在几个基准图像数据集中分析并证明了提出的特征图畸变对产生具有较高测试性能的深神经网络的优势。

Deep neural networks often consist of a great number of trainable parameters for extracting powerful features from given datasets. On one hand, massive trainable parameters significantly enhance the performance of these deep networks. On the other hand, they bring the problem of over-fitting. To this end, dropout based methods disable some elements in the output feature maps during the training phase for reducing the co-adaptation of neurons. Although the generalization ability of the resulting models can be enhanced by these approaches, the conventional binary dropout is not the optimal solution. Therefore, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks and propose a feature distortion method (Disout) for addressing the aforementioned problem. In the training period, randomly selected elements in the feature maps will be replaced with specific values by exploiting the generalization error bound. The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated on several benchmark image datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源