论文标题
在代理商不确定性下的自动驾驶汽车的非高斯偶然性约束轨迹计划
Non-Gaussian Chance-Constrained Trajectory Planning for Autonomous Vehicles under Agent Uncertainty
论文作者
论文摘要
代理行为可以说是自动驾驶汽车轨迹计划中不确定性的最大来源。这个问题激发了行为预测社区的大量工作,以学习未来国家和代理商的行动的丰富分布。但是,大多数当前在代理下的机会约束轨迹规划或障碍不确定性下的作品都假定高斯不确定性或线性约束,这是限制或需要采样的,这在优化问题中可以在计算上很难进行计算。在本文中,我们通过将方法呈现到由多项式和混合模型定义的具有潜在非高斯组件的上限的上限机会约束来扩展最新的机会。我们的方法通过使用集中不平等的分布的统计矩来实现其普遍性,以使违规的概率上限。通过这种方法,基于优化的轨迹计划者可以计划相对于代表代理未来位置的广泛分布而有机会约束的轨迹。在实验中,我们表明可以使用最先进的非线性程序求解器来解决所得的优化问题,以便快速计划轨迹以便在线使用。
Agent behavior is arguably the greatest source of uncertainty in trajectory planning for autonomous vehicles. This problem has motivated significant amounts of work in the behavior prediction community on learning rich distributions of the future states and actions of agents. However, most current works on chance-constrained trajectory planning under agent or obstacle uncertainty either assume Gaussian uncertainty or linear constraints, which is limiting, or requires sampling, which can be computationally intractable to encode in an optimization problem. In this paper, we extend the state-of-the-art by presenting a methodology to upper-bound chance-constraints defined by polynomials and mixture models with potentially non-Gaussian components. Our method achieves its generality by using statistical moments of the distributions in concentration inequalities to upper-bound the probability of constraint violation. With this method, optimization-based trajectory planners can plan trajectories that are chance-constrained with respect to a wide range of distributions representing predictions of agent future positions. In experiments, we show that the resulting optimization problem can be solved with state-of-the-art nonlinear program solvers to plan trajectories fast enough for use online.