论文标题
随机地平线主体问题
Random horizon principal-agent problems
论文作者
论文摘要
我们考虑了随机地平线主管问题的一般表述,并在终止时进行了连续付款和一次性付款。在该问题的欧洲版本中,随机视野仅由主体选择,而除了对输出过程的动力学施加努力之外,没有其他可能的动作。我们还考虑了合同的美国版本,该合同涵盖了开创性的Sannikov的模型,代理商还可以通过最佳选择合同的终止时间来辞职。我们的主要结果将这种非零和随机差异游戏减少到适当的随机控制问题,这些问题可以通过随机控制理论的标准方法来解决。通过遵循Sannikov的方法,Cvitanic,Prostamai和Touzi进一步开发了这种减少。我们首先介绍了一类合适的合同,其代理商的最佳努力立即以随机控制理论中的标准验证论证为特征。然后,我们证明,这类合同在适当的意义上是密集的,因此对这一受限制的合同家族的优化不会代表一般性的损失。通过使用最新的随机层次二阶向后SDE的适应性结果获得结果。
We consider a general formulation of the random horizon Principal-Agent problem with a continuous payment and a lump-sum payment at termination. In the European version of the problem, the random horizon is chosen solely by the principal with no other possible action from the agent than exerting effort on the dynamics of the output process. We also consider the American version of the contract, which covers the seminal Sannikov's model, where the agent can also quit by optimally choosing the termination time of the contract. Our main result reduces such non-zero-sum stochastic differential games to appropriate stochastic control problems which may be solved by standard methods of stochastic control theory. This reduction is obtained by following Sannikov's approach, further developed by Cvitanic, Possamai, and Touzi. We first introduce an appropriate class of contracts for which the agent's optimal effort is immediately characterized by the standard verification argument in stochastic control theory. We then show that this class of contracts is dense in an appropriate sense so that the optimization over this restricted family of contracts represents no loss of generality. The result is obtained by using the recent well-posedness result of random horizon second-order backward SDE.