论文标题
一维纤维的三倍极大收缩的一般大象:特殊情况
General elephants for threefold extremal contractions with one-dimensional fibers: exceptional case
论文作者
论文摘要
令$(x,c)$是三倍的$ x $的细菌,沿连接的终端奇异性沿连接的完整曲线$ c $,带有收缩$ f:(x,c)\ to(z,o)$,使得$ c = f^f^{ - 1}(-1}(o)假设$ c $的每个不可约组件最多包含索引$> 2 $的一个点。我们证明,一般成员$ d \ in | { - } k_x | $是带有奇异性的普通表面。
Let $(X, C)$ be a germ of a threefold $X$ with terminal singularities along a connected reduced complete curve $C$ with a contraction $f : (X, C) \to (Z, o)$ such that $C = f^{-1} (o)_{\mathrm{red}}$ and $-K_X$ is $f$-ample. Assume that each irreducible component of $C$ contains at most one point of index $>2$. We prove that a general member $D\in |{-}K_X|$ is a normal surface with Du Val singularities.