论文标题
独特的量表保留神经元簇的自相似集成和射击功能
Unique Scales Preserve Self-Similar Integrate-and-Fire Functionality of Neuronal Clusters
论文作者
论文摘要
确定大脑的神经元群集大小作为网络计算中的节点对神经科学和人工智能至关重要,因为这些定义了构建智能计算所需的认知块。实验支持神经聚类的多种形式和大小,而神经质量模型(NMM)则具有量表不变功能。在这里,我们将计算模拟与大脑衍生的fMRI网络一起使用,以表明不仅大脑网络在跨尺度上连续保持结构相似,而且还保留了特定尺度上的神经元样信号积分功能。因此,我们提出了神经元网络的粗粒,以进行整体节点,其中多个尖峰构成了其合奏尖峰,并重新缩放了整体时间步骤。出现的分形时空结构和功能允许在跨实验量表进行计算建模的桥接方面进行战略选择,同时还提出了对大脑大小的发育和/或进化“生长爆发”的调节限制,就像进化生物学中的per刺穿平衡理论一样。
Identifying the brain's neuronal cluster size to be presented as nodes in a network computation is critical to both neuroscience and artificial intelligence, as these define the cognitive blocks required for building intelligent computation. Experiments support many forms and sizes of neural clustering, while neural mass models (NMM) assume scale-invariant functionality. Here, we use computational simulations with brain-derived fMRI network to show that not only brain network stays structurally self-similar continuously across scales, but also neuron-like signal integration functionality is preserved at particular scales. As such, we propose a coarse-graining of network of neurons to ensemble-nodes, with multiple spikes making up its ensemble-spike, and time re-scaling factor defining its ensemble-time step. The fractal-like spatiotemporal structure and function that emerge permit strategic choice in bridging across experimental scales for computational modeling, while also suggesting regulatory constraints on developmental and/or evolutionary "growth spurts" in brain size, as per punctuated equilibrium theories in evolutionary biology.