论文标题

圆形球形除数及其接触拓扑

Circular spherical divisors and their contact topology

论文作者

Li, Tian-Jun, Mak, Cheuk Yu, Min, Jie

论文摘要

本文研究了与圆形球形除差相关的符号和接触拓扑。我们将所有凹面的圆形球形除差$ d $归类为曲线等效性,如果它们的补充很少,则可以符合嵌入式嵌入到封闭的symblectic 4 manifold中,并表明它们都被认为是符号log calabi-yau对。然后,我们确定了这种$ d $的边界圆环捆绑包的所有最小符号填充物的Stein填充性和合理同源性类型。当$ d $是抗态和凸面时,我们为其边界接触圆环捆绑包的Stein填充物提供了明确的贝蒂数字界限。

This paper investigates the symplectic and contact topology associated to circular spherical divisors. We classify, up to toric equivalence, all concave circular spherical divisors $ D $ that can be embedded symplectically into a closed symplectic 4-manifold and show they are all realized as symplectic log Calabi-Yau pairs if their complements are minimal. We then determine the Stein fillability and rational homology type of all minimal symplectic fillings for the boundary torus bundles of such $D$. When $ D $ is anticanonical and convex, we give explicit betti number bounds for Stein fillings of its boundary contact torus bundle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源