论文标题

自适应繁殖图卷积网络

Adaptive Propagation Graph Convolutional Network

论文作者

Spinelli, Indro, Scardapane, Simone, Uncini, Aurelio

论文摘要

图形卷积网络(GCN)是一个神经网络模型的家族,通过跨节点的顶点操作和消息传递交换来对图数据进行推断。关于后者,出现了两个关键问题:(i)如何设计一个可区分的交换协议(例如,原始GCN中的1-Hop laplacian平滑),以及(ii)如何相对于本地更新来表征复杂性的权衡。在本文中,我们表明可以通过在每个节点独立调整通信步骤数来实现最新结果。特别是,我们将每个节点赋予停止单元(受坟墓的自适应计算时间的启发),该单元在每个交换都决定是否继续通信之后。我们表明,所提出的自适应繁殖GCN(AP-GCN)在迄今为止在许多基准上取得了优于最佳模型的结果,同时需要在其他参数方面需要一个小的开销。我们还调查了一个正规化术语,以实施沟通和准确性之间的明确权衡。 AP-GCN实验的代码作为开源库发布。

Graph convolutional networks (GCNs) are a family of neural network models that perform inference on graph data by interleaving vertex-wise operations and message-passing exchanges across nodes. Concerning the latter, two key questions arise: (i) how to design a differentiable exchange protocol (e.g., a 1-hop Laplacian smoothing in the original GCN), and (ii) how to characterize the trade-off in complexity with respect to the local updates. In this paper, we show that state-of-the-art results can be achieved by adapting the number of communication steps independently at every node. In particular, we endow each node with a halting unit (inspired by Graves' adaptive computation time) that after every exchange decides whether to continue communicating or not. We show that the proposed adaptive propagation GCN (AP-GCN) achieves superior or similar results to the best proposed models so far on a number of benchmarks, while requiring a small overhead in terms of additional parameters. We also investigate a regularization term to enforce an explicit trade-off between communication and accuracy. The code for the AP-GCN experiments is released as an open-source library.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源