论文标题
P_K和C_K结构和超结构的连通性
P_k and C_k structure and substructure connectivity of hypercubes
论文作者
论文摘要
HyperCube是在多处理器计算机系统中互连处理器的最重要网络之一。不同种类的连接性是测量网络容错性的重要参数。 Lin等人\ cite {linstructure}引入了$ h $ - 结构连接性$κ(q_n; h)$(resp。$ h $ -subtructure $κ^s(q_n; h)$)作为$ f = = \ { (i = 1,\ dots,m)$是同构至$ h $(resp。$ f = \ {h'_1,\ dots,h'_m \} $,使得$ h'_i(i = 1,\ dots,m)$是与$ h $ $ h $的$ q_n-iS $ q_n-v(f)contir n of triv n of triv n of trive $ q_n-v(f)fifcial n is of trial n of trive $ q_n-v(f)f)。在本文中,我们讨论了$κ(q_n; h)$和$κ^s(q_n; h)$ $ q_n $与$ n \ geq 3 $和$ h \ in \ in \ in \ {作为副产品,我们解决了\ cite {manestructure}中提到的问题。
Hypercube is one of the most important networks to interconnect processors in multiprocessor computer systems. Different kinds of connectivities are important parameters to measure the fault tolerability of networks. Lin et al.\cite{LinStructure} introduced the concept of $H$-structure connectivity $κ(Q_n;H)$ (resp. $H$-substructure connectivity $κ^s(Q_n;H)$) as the minimum cardinality of $F=\{H_1,\dots,H_m\}$ such that $H_i (i=1,\dots,m)$ is isomorphic to $H$ (resp. $F=\{H'_1,\dots,H'_m\}$ such that $H'_i (i=1,\dots,m)$ is isomorphic to connected subgraphs of $H$) such that $Q_n-V(F)$ is disconnected or trivial. In this paper, we discuss $κ(Q_n;H)$ and $κ^s(Q_n;H)$ for hypercubes $Q_n$ with $n\geq 3$ and $H\in \{P_k,C_k|3\leq k\leq 2^{n-1}\}$. As a by-product, we solve the problem mentioned in \cite{ManeStructure}.