论文标题
重新访问额外的分布式优化
Revisiting EXTRA for Smooth Distributed Optimization
论文作者
论文摘要
Extra是一种流行的方法,用于二进入分布式优化,并具有广泛的应用。本文重新审视了额外的。首先,我们通过改进的$ o \左(\ frac {\ frac {l}μ+\ frac {1} {1-σ_2(w)} \ right)\ log \ frac {1} {ε(1-σ_2(w)} \ right和complement $ commutions $ complemance $ complection和complemance $ complemance $ complectiities $ complection和complemance $ complectionition $ complection和complemance $ complection和complemance $ - $ l $ -smooth问题,其中$σ_2(w)$是重量矩阵$ w $的第二大单数值。当不存在强凸度时,我们证明了$ o \ left(\ left(\ frac {l}ε+\ frac {1} {1-σ_2(w)} \ right)\ log \ frac {1} {1} {1- = _2(w)} \ right)$ copplectiate。然后,我们使用催化剂框架加速额外并获得$ o \ left(\ sqrt {\ frac {\ frac {l} {μ(1-σ_2(w)}} \ log \ log \ log \ frac {l} {l} {μ(1-σ_2(w)} \ log frac \ frac \ frac \ frac \ frac \ frac \ frac \ frac \ frac convient和平滑的问题和$ o \ left(\ sqrt {\ frac {l} {ε(1-σ_2(w)}}} \ log \ frac {1} {ε(1-σ_2(w)\ right)$对于非刺激性convex One的复杂性。 Our communication complexities of the accelerated EXTRA are only worse by the factors of $\left(\log\frac{L}{μ(1-σ_2(W))}\right)$ and $\left(\log\frac{1}{ε(1-σ_2(W))}\right)$ from the lower complexity bounds for strongly convex and non-strongly convex分别问题。
EXTRA is a popular method for dencentralized distributed optimization and has broad applications. This paper revisits EXTRA. First, we give a sharp complexity analysis for EXTRA with the improved $O\left(\left(\frac{L}μ+\frac{1}{1-σ_2(W)}\right)\log\frac{1}{ε(1-σ_2(W))}\right)$ communication and computation complexities for $μ$-strongly convex and $L$-smooth problems, where $σ_2(W)$ is the second largest singular value of the weight matrix $W$. When the strong convexity is absent, we prove the $O\left(\left(\frac{L}ε+\frac{1}{1-σ_2(W)}\right)\log\frac{1}{1-σ_2(W)}\right)$ complexities. Then, we use the Catalyst framework to accelerate EXTRA and obtain the $O\left(\sqrt{\frac{L}{μ(1-σ_2(W))}}\log\frac{ L}{μ(1-σ_2(W))}\log\frac{1}ε\right)$ communication and computation complexities for strongly convex and smooth problems and the $O\left(\sqrt{\frac{L}{ε(1-σ_2(W))}}\log\frac{1}{ε(1-σ_2(W))}\right)$ complexities for non-strongly convex ones. Our communication complexities of the accelerated EXTRA are only worse by the factors of $\left(\log\frac{L}{μ(1-σ_2(W))}\right)$ and $\left(\log\frac{1}{ε(1-σ_2(W))}\right)$ from the lower complexity bounds for strongly convex and non-strongly convex problems, respectively.