论文标题

用$ l _ {\ infty} $对称椭圆系数张量以及应用于Stokes和Navier-Stokes边界问题的应用程序问题的变化方法的层势方法。

Variational approach for layer potentials of the Stokes system with $L_{\infty }$ symmetrically elliptic coefficient tensor and applications to Stokes and Navier-Stokes boundary problems

论文作者

Kohr, Mirela, Mikhailov, Sergey E., Wendland, Wolfgang L.

论文摘要

本文的第一个目的是在Lipschitz的基于$ l_2 $的加权Sobolev空间中开发一层潜在理论,用于$ {\ Mathbb r}^n $,$ n \ geq 3 $,用于$ l_ {矩阵。为此,我们探索了等效的混合变异配方,并证明了$ {\ Mathbb r}^n $的各向异性Stokes System的某些传输问题的适当性,并在$ l_2 $ b的加权Sobolev空间中具有给定数据。这些结果用于定义牛顿和层势并获得其特性。然后,我们分析了外部Dirichlet,Neumann的良好性,以及使用$ L _ {\ infty} $对称椭圆系数张量的Stokes系统的混合问题。其中一些问题的解决方案也以各向异性的牛顿和层电位为代表。最后,我们证明了在$ {\ Mathbb r}^3 $中的互补Lipschitz域中存在的薄弱解决方案,用于各向异性Navier-Stokes System,其中包含$ L_2 $的加权Sobolev Space的常规数据。该分析依赖于有界域家族中各向异性Navier-Stokes系统的Dirichlet问题以及Leray-Schauder固定点定理的存在结果。

The first aim of this paper is to develop a layer potential theory in $L_2$-based weighted Sobolev spaces on Lipschitz bounded and exterior domains of ${\mathbb R}^n$, $n\geq 3$, for the anisotropic Stokes system with $L_{\infty }$ viscosity coefficient tensor satisfying an ellipticity condition for symmetric matrices. To do this, we explore equivalent mixed variational formulations and prove the well-posedness of some transmission problems for the anisotropic Stokes system in Lipschitz domains of ${\mathbb R}^n$, with the given data in $L_2$-based weighted Sobolev spaces. These results are used to define the Newtonian and layer potentials and to obtain their properties. Then we analyze well-posedness of the exterior Dirichlet, Neumann and mixed problems for the Stokes system with $L_{\infty }$ symmetrically elliptic coefficient tensor. Solutions of some of these problems are also represented in terms of the anisotropic Stokes Newtonian and layer potentials. Finally, we prove the existence of a weak solution for a transmission problem in complementary Lipschitz domains in ${\mathbb R}^3$ for the anisotropic Navier-Stokes system with general data in $L_2$-based weighted Sobolev spaces. The analysis relies on an existence result for a Dirichlet problem for the anisotropic Navier-Stokes system in a family of bounded domains, and on the Leray-Schauder fixed point theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源