论文标题

使用分层广义转换模型对多种响应类型进行联合时空分析,并应用于2019年冠状病毒疾病和社会疏远

Joint spatio-temporal analysis of multiple response types using the hierarchical generalized transformation model with application to coronavirus disease 2019 and social distancing

论文作者

Bradley, Jonathan R.

论文摘要

社会距离可以描述为维持个人之间的身体距离的努力,并已成为打击2019年康诺维病毒疾病(Covid-19)的必要公共卫生措施。众所周知,社会距离会削弱因199号而导致的事件和死亡,但是,经济和心理影响有害。这激发了我们分析Covid-19的事件(和死亡),同时衡量了美国经济健康状况(即道琼斯工业公司的调整后收盘价),并通过Google趋势数据来衡量Covid-19中的公共利益。我们实施的模型是可以轻松地适应数据科学家的连续数据的首选方法的,该方法可帮助对此重要数据集进行未来的分析。该数据集由多种响应类型(例如,连续价值,计数值,二项式计数)组成。因此,我们引入了一种合理的易于实现的通用方法,该方法将连续响应(首选模型)的统计模型“转换”到多响应数据集的贝叶斯模型中。为此,我们转换数据,以便可以使用首选模型合理地对连续值的转换数据进行合理建模,并且转换本身被视为未知。我们方法的实施涉及两个步骤。第一步使用潜在共轭多变量(LCM)模型产生转换数据的后验重复。第二步涉及从首选模型隐含的后验分布产生值。我们将我们的模型称为分层概括转换(HGT)模型。在模拟中,我们通过合并两个不同的首选模型来证明HGT模型的灵活性:贝叶斯添加剂回归树(BART)和空间混合效应(时空混合效应)模型。

Social distancing can be described as an effort to maintain a physical distance between individuals and has become a necessary public health measure to combat cornoavirus disease 2019 (COVID-19). Social distancing is known to weaken incidences and deaths due to COVID-19, however, there are detrimental economic and psychological effects. This motivates us to analyze incidences (and deaths) of COVID-19 along with a measure of the health of the US economy (i.e., the adjusted closing price of the Dow Jones Industrial), and a measure of the public interest in COVID-19 through Google Trends data. The model we implement is developed to be easily adapted to a data scientist's preferred method for continuous data, which is done to aid future analyses of this important dataset. This dataset consists of multiple response types (e.g., continuous-valued, count-valued, binomial counts). Thus, we introduce a reasonable easy-to-implement all-purpose method that "converts" a statistical model for continuous responses (the preferred model) into a Bayesian model for multi-response data sets. To do this, we transform the data such that the continuous-valued transformed data can be reasonably modeled using the preferred model and the transformation itself is treated as unknown. The implementation of our approach involves two steps. The first step produces posterior replicates of the transformed data using a latent conjugate multivariate (LCM) model. The second step involves generating values from the posterior distribution implied by the preferred model. We refer to our model as the hierarchical generalized transformation (HGT) model. In a simulation, we demonstrate the flexibility of the HGT model by incorporating two different preferred models: Bayesian additive regression trees (BART) and the spatial mixed effects (spatio-temporal mixed effects) models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源