论文标题

样条小波的正交系统作为Sobolev空间中的无条件基础

Orthogonal Systems of Spline Wavelets as Unconditional Bases in Sobolev Spaces

论文作者

Srivastava, Rajula

论文摘要

我们展示了Sobolev空间中功能$ l^s_p $的必要范围,可以表示为正常样条小波系统系统的无条件总和,例如战斗 - 莱米列列小波。我们还考虑了Triebel-Lizorkin空间的自然扩展。这建立在Seeger和Ullrich的先前工作的基础上,并在其中建立了HAAR小波系统的类似结果。

We exhibit the necessary range for which functions in the Sobolev spaces $L^s_p$ can be represented as an unconditional sum of orthonormal spline wavelet systems, such as the Battle-Lemarié wavelets. We also consider the natural extensions to Triebel-Lizorkin spaces. This builds upon, and is a generalization of, previous work of Seeger and Ullrich, where analogous results were established for the Haar wavelet system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源