论文标题
布朗人飞越圈子
Brownian flights over a circle
论文作者
论文摘要
随机步行的固定径向分布,$ p(ρ)$,带有扩散系数$ d $,它与切向速度$ v $绕着不可穿透的半径圆盘绕着$ r \ r \ gg 1 $收敛到涉及空气功能的发行版。典型的轨迹位于圆形条$ [R,R+δr^{1/3}] $中,其中$δ$是取决于参数$ d $和$ v $的常数,并且在$ r $上是独立的。
The stationary radial distribution, $P(ρ)$, of the random walk with the diffusion coefficient $D$, which winds with the tangential velocity $V$ around the impenetrable disc of radius $R$ for $R\gg 1$ converges to the distribution involving the Airy function. Typical trajectories are localized in the circular strip $[R, R+ δR^{1/3}]$, where $δ$ is the constant which depends on the parameters $D$ and $V$ and is independent on $R$.