论文标题

根据机器学习技术对复杂电路功能故障率的估计

On the Estimation of Complex Circuits Functional Failure Rate by Machine Learning Techniques

论文作者

Lange, Thomas, Balakrishnan, Aneesh, Glorieux, Maximilien, Alexandrescu, Dan, Sterpone, Luca

论文摘要

除法或脆弱性因素是当今功能安全要求规定的失败分析工作的主要特征。确定顺序逻辑单元的功能除法通常需要计算强化的故障注入模拟运动。在本文中,提出了一种新的方法,该方法使用机器学习来估计单个触发器的功能除法,从而优化和增强断层注入工作。因此,首先,通过结合静态元素(单元格性能,电路结构,合成属性)和动态元素(信号活动)的分析方法来描述和提取一组每种固定特征。其次,通过第一原理故障模拟方法获得参考数据。最后,参考数据集的一部分用于训练机器学习算法,其余部分用于验证和基准测试训练有素的工具的准确性。预期的目标是获得一个训练有素的模型,能够为完整的电路实例列表提供准确的每类功能除法数据,这一目标很难使用经典方法实现。提出的方法伴随着一个实践示例,以确定各种机器学习模型的性能用于不同的培训大小。

De-Rating or Vulnerability Factors are a major feature of failure analysis efforts mandated by today's Functional Safety requirements. Determining the Functional De-Rating of sequential logic cells typically requires computationally intensive fault-injection simulation campaigns. In this paper a new approach is proposed which uses Machine Learning to estimate the Functional De-Rating of individual flip-flops and thus, optimising and enhancing fault injection efforts. Therefore, first, a set of per-instance features is described and extracted through an analysis approach combining static elements (cell properties, circuit structure, synthesis attributes) and dynamic elements (signal activity). Second, reference data is obtained through first-principles fault simulation approaches. Finally, one part of the reference dataset is used to train the Machine Learning algorithm and the remaining is used to validate and benchmark the accuracy of the trained tool. The intended goal is to obtain a trained model able to provide accurate per-instance Functional De-Rating data for the full list of circuit instances, an objective that is difficult to reach using classical methods. The presented methodology is accompanied by a practical example to determine the performance of various Machine Learning models for different training sizes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源