论文标题
关于切线弱缺陷和投射品种的可识别性
On tangential weak defectiveness and identifiability of projective varieties
论文作者
论文摘要
如果可以将$ h $ p \ in \ mathbb {p}^n $ $ h $ -sitififsififsifsififsififtift,则相对于多种$ x \ subset \ mathbb {p}^n $,如果可以以$ x $的$ h $ elements的线性组合为单独的$ x $,则可以将其写入。可识别性暗示着接触基因座的条件在$ x $的一般线性空间中称为无弱缺陷和非切向弱缺陷。我们提供条件,以确保不可还原和不相反的投射变体$ x \ subset \ mathbb {p}^n $的非切向弱缺陷,我们将这些结果应用于segre-veronese品种。
A point $p\in\mathbb{P}^N$ of a projective space is $h$-identifiable, with respect to a variety $X\subset\mathbb{P}^N$, if it can be written as linear combination of $h$ elements of $X$ in a unique way. Identifiability is implied by conditions on the contact locus in $X$ of general linear spaces called non weak defectiveness and non tangential weak defectiveness. We give conditions ensuring non tangential weak defectiveness of an irreducible and non-degenerated projective variety $X\subset\mathbb{P}^N$, and we apply these results to Segre-Veronese varieties.