论文标题
部分观察到的动态张量响应回归
Partially Observed Dynamic Tensor Response Regression
论文作者
论文摘要
在现代数据科学中,动态张量数据在众多应用中占上风。一个重要的任务是表征这种动态张量与外部协变量之间的关系。但是,通常仅观察到张量数据,从而使许多现有方法无法应用。在本文中,我们开发了一个回归模型,其中部分观察到的动态张量是响应和外部协变量作为预测指标。我们在回归系数张量上介绍了低级别,稀疏性和融合结构,并考虑在观察到的条目上投射的损失功能。我们开发了一个有效的非凸交替更新算法,并从优化算法的每个步骤中得出实际估计器的有限样本误差。张量反应中未观察到的条目构成了严重的挑战。结果,与现有的张量完成或张量响应回归解决方案相比,我们的建议在估计算法,规律条件以及理论特性方面有很大不同。我们说明了使用模拟的提议方法的功效,以及两个真实的应用,一项神经影像学研究和数字广告研究。
In modern data science, dynamic tensor data is prevailing in numerous applications. An important task is to characterize the relationship between such dynamic tensor and external covariates. However, the tensor data is often only partially observed, rendering many existing methods inapplicable. In this article, we develop a regression model with partially observed dynamic tensor as the response and external covariates as the predictor. We introduce the low-rank, sparsity and fusion structures on the regression coefficient tensor, and consider a loss function projected over the observed entries. We develop an efficient non-convex alternating updating algorithm, and derive the finite-sample error bound of the actual estimator from each step of our optimization algorithm. Unobserved entries in tensor response have imposed serious challenges. As a result, our proposal differs considerably in terms of estimation algorithm, regularity conditions, as well as theoretical properties, compared to the existing tensor completion or tensor response regression solutions. We illustrate the efficacy of our proposed method using simulations, and two real applications, a neuroimaging dementia study and a digital advertising study.