论文标题

通过自适应门关注文本分类来合并有效的全球信息

Incorporating Effective Global Information via Adaptive Gate Attention for Text Classification

论文作者

Li, Xianming, Li, Zongxi, Zhao, Yingbin, Xie, Haoran, Li, Qing

论文摘要

主要的文本分类研究专注于仅使用文本实例或引入外部知识(例如,手工艺特征和领域专家知识)的培训分类器。相反,某些语料库级统计特征(例如单词频率和分布)并未得到很好的利用。我们的工作表明,与多种基线模型相比,如此简单的统计信息可以有效地增强分类性能。在本文中,我们提出了一个带有名为Adaptive Gate注意模型的栅极机制的分类器,其中具有全局信息(AGA+GI),其中自适应门机制将全局统计特征纳入了潜在的语义特征,并且注意力层捕获了句子中的依赖关系。为了减轻过度拟合的问题,我们提出了一种新型的漏水机制,以提高概括能力和性能稳定性。我们的实验表明,所提出的方法可以比基于CNN的基于CNN的方法获得更好的准确性,而无需有关几个基准的全局信息。

The dominant text classification studies focus on training classifiers using textual instances only or introducing external knowledge (e.g., hand-craft features and domain expert knowledge). In contrast, some corpus-level statistical features, like word frequency and distribution, are not well exploited. Our work shows that such simple statistical information can enhance classification performance both efficiently and significantly compared with several baseline models. In this paper, we propose a classifier with gate mechanism named Adaptive Gate Attention model with Global Information (AGA+GI), in which the adaptive gate mechanism incorporates global statistical features into latent semantic features and the attention layer captures dependency relationship within the sentence. To alleviate the overfitting issue, we propose a novel Leaky Dropout mechanism to improve generalization ability and performance stability. Our experiments show that the proposed method can achieve better accuracy than CNN-based and RNN-based approaches without global information on several benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源