论文标题

struct-MMSB:混合成员随机块模型与可解释的结构化先验

Struct-MMSB: Mixed Membership Stochastic Blockmodels with Interpretable Structured Priors

论文作者

Zhang, Yue, Ramesh, Arti

论文摘要

混合会员随机BlockModel(MMSB)是社区检测和网络生成的流行框架。它通过利用底层图结构来了解整个社区的每个节点的低级混合会员表示。 MMSB假设节点的成员分布是从Dirichlet分布中独立得出的,该分布将其功能限制为建模现实世界网络中存在的高度相关的图形结构。在本文中,我们提出了一种柔性结构化的MMSB模型\ TextIt {struct-MMSB},该模型使用了最近开发的统计关系学习模型,Hinge-Markov随机字段(HL-MRF)作为结构化,在模型复杂的依赖性依赖性之前,是在节点属性之间进行模型的复杂依赖性,多种相关链接和与混合型分布的关系。使用使用加权的一阶逻辑规则的概率编程语言指定我们的模型,从而增强了模型的解释性。此外,我们的模型能够通过编码有意义的潜在变量来学习现实世界网络中的潜在特征,该变量被编码为观察到的特征和成员分布的复杂组合。我们提出了一种基于期望最大化的推理算法,该算法迭代地学习潜在变量和参数,推理算法的可扩展随机变化以及一种学习HL-MRF结构化先验权重的方法。我们在三种不同类型的网络和相应的建模方案上评估了我们的模型,并证明我们的模型能够在测试日志类模型中平均提高15 \%的改善,并且与最新的网络模型相比,我们的模型能够平均地提高了15 \%。

The mixed membership stochastic blockmodel (MMSB) is a popular framework for community detection and network generation. It learns a low-rank mixed membership representation for each node across communities by exploiting the underlying graph structure. MMSB assumes that the membership distributions of the nodes are independently drawn from a Dirichlet distribution, which limits its capability to model highly correlated graph structures that exist in real-world networks. In this paper, we present a flexible richly structured MMSB model, \textit{Struct-MMSB}, that uses a recently developed statistical relational learning model, hinge-loss Markov random fields (HL-MRFs), as a structured prior to model complex dependencies among node attributes, multi-relational links, and their relationship with mixed-membership distributions. Our model is specified using a probabilistic programming templating language that uses weighted first-order logic rules, which enhances the model's interpretability. Further, our model is capable of learning latent characteristics in real-world networks via meaningful latent variables encoded as a complex combination of observed features and membership distributions. We present an expectation-maximization based inference algorithm that learns latent variables and parameters iteratively, a scalable stochastic variation of the inference algorithm, and a method to learn the weights of HL-MRF structured priors. We evaluate our model on six datasets across three different types of networks and corresponding modeling scenarios and demonstrate that our models are able to achieve an improvement of 15\% on average in test log-likelihood and faster convergence when compared to state-of-the-art network models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源