论文标题
天体物理系统中粒子加速度的多尺度模拟
Multi-scale simulations of particle acceleration in astrophysical systems
论文作者
论文摘要
这篇综述旨在提供最新的状态,并对湍流天体物理流中的能量粒子加速度和运输的数值研究进行一般介绍。该受试者还通过对激光血浆实验域中获得的最新进展的简短概述进行了补充。我们回顾了牛顿和相对论天体物理流中非热分布生产的核心的主要物理过程,即第一阶和二阶费米加速过程。我们还讨论了冲击漂移和冲浪加速度,这两个过程在冲击加速度的颗粒注入背景下很重要。我们通过一些细节分析了用于描述粒子动力学的细胞中粒子(PIC)方法。我们回顾了近年来通过PIC模拟获得的主要结果,这些结果涉及冲击和重新连接事件中的粒子加速度。该综述讨论了fokker-planck问题的解决方案,并在冲击下的颗粒加速度研究中以及紧凑物体周围的热冠状等离子体中的颗粒加速度进行了解决。我们继续考虑大规模物理学。我们描述了磁水动力学(MHD)模拟的最新发展。我们特别强调了可以使用多流体计算或直接耦合动力学和流体计算的能量粒子动力学的方式与MHD溶液耦合。必须研究深度相对论方案中颗粒的加速度来解释最高的宇宙射线能量。
This review aims at providing an up-to-date status and a general introduction to the subject of the numerical study of energetic particle acceleration and transport in turbulent astrophysical flows. The subject is also complemented by a short overview of recent progresses obtained in the domain of laser plasma experiments. We review the main physical processes at the heart of the production of a non-thermal distribution in both Newtonian and relativistic astrophysical flows, namely the first and second order Fermi acceleration processes. We also discuss shock drift and surfing acceleration, two processes important in the context of particle injection in shock acceleration. We analyze with some details the particle-in-cell (PIC) approach used to describe particle kinetics. We review the main results obtained with PIC simulations in the recent years concerning particle acceleration at shocks and in reconnection events. The review discusses the solution of Fokker-Planck problems with application to the study of particle acceleration at shocks but also in hot coronal plasmas surrounding compact objects. We continue by considering large scale physics. We describe recent developments in magnetohydrodynamic (MHD) simulations. We give a special emphasize on the way energetic particle dynamics can be coupled to MHD solutions either using a multi-fluid calculation or directly coupling kinetic and fluid calculations. This aspect is mandatory to investigate the acceleration of particles in the deep relativistic regimes to explain the highest Cosmic Ray energies.