论文标题
关于dieudonné理论的注释
A Note on Dieudonné Theory over Perfectoid Rings
论文作者
论文摘要
对于完美的环$ r $和一个自然数量$ n $,我们研究了$ n $ barsotti-tate群体的基本形象,这是在交换性,有限的,本地免费的,$ r $ - $ p $ - 功率订单和Torsion breuil-kisin-kisin-fargues modules $ $ $ $ r $ r $ r $ r $ r $ r r $ r $ r $ r $ r $ r $ r $ r $ r $ r $之间的反等效性下的反应性。我们描述了关联的半线代数数据,并显示出每一个$ \ text {bt} _n $ - $ r $上方的每个$ p^n $ - tosso $ \ text {bt} $ group的$ p^n $ -torsion。
For a perfectoid ring $R$ and a natural number $n$ we investigate the essential image of the category of truncated by $n$ Barsotti-Tate groups under the anti-equivalence between commutative, finite, locally free, $R$-group schemes of $p$-power order and torsion Breuil-Kisin-Fargues modules over $R$. We describe the associated semi-liner algebra data and show as a consequence that every $\text{BT}_n$-group over $R$ is the $p^n$-torsion of some $\text{BT}$-group.