论文标题
Gabor内核是虹膜识别的最佳选择吗?
Are Gabor Kernels Optimal for Iris Recognition?
论文作者
论文摘要
Gabor内核被广泛接受为虹膜识别的主要过滤器。在这项工作中,鉴于当前对神经网络的兴趣,如果Gabor内核是唯一在IRIS识别方面表现最佳的功能家族,或者如果可以直接从IRIS数据中学习更好的过滤器,则研究了。我们(故意)单层卷积神经网络模拟了基于IRIS代码的算法。我们学习了两组数据驱动的内核;一个是从随机初始化的重量开始的,另一个是从开源的Gabor内核开始。通过实验,我们表明网络不会在Gabor内核上收敛,而是在边缘检测器,斑点探测器和简单波的混合物中收敛。在我们使用三个主题 - 偶口数据集进行的实验中,我们发现这些学识渊博的内核的性能与开源Gabor内核相当。这些导致我们得出两个结论:(a)在虹膜识别中提供最佳性能的功能系列比Gabor内核更宽,并且(b)我们可能会达到使用单个卷积层的IRIS编码算法的最大性能,但使用多个过滤器。用这项工作发布的是一个学习数据驱动的内核的框架,可以轻松地将其移植到开源IRIS识别软件中(例如,Osiris-开源IRIS)。
Gabor kernels are widely accepted as dominant filters for iris recognition. In this work we investigate, given the current interest in neural networks, if Gabor kernels are the only family of functions performing best in iris recognition, or if better filters can be learned directly from iris data. We use (on purpose) a single-layer convolutional neural network as it mimics an iris code-based algorithm. We learn two sets of data-driven kernels; one starting from randomly initialized weights and the other from open-source set of Gabor kernels. Through experimentation, we show that the network does not converge on Gabor kernels, instead converging on a mix of edge detectors, blob detectors and simple waves. In our experiments carried out with three subject-disjoint datasets we found that the performance of these learned kernels is comparable to the open-source Gabor kernels. These lead us to two conclusions: (a) a family of functions offering optimal performance in iris recognition is wider than Gabor kernels, and (b) we probably hit the maximum performance for an iris coding algorithm that uses a single convolutional layer, yet with multiple filters. Released with this work is a framework to learn data-driven kernels that can be easily transplanted into open-source iris recognition software (for instance, OSIRIS -- Open Source IRIS).