论文标题

大规模拓扑中的小无数枢机主教

Small uncountable cardinals in large-scale topology

论文作者

Banakh, Taras

论文摘要

在本文中,我们有兴趣查找和评估在大规模拓扑中出现的连续体的基本特征,通常是属于某些类别(不差异,不分配的,大的,大,大)或局部有限的粗糙结构的最小粗结构的重量。除了著名的红衣主教$ \ Mathfrak B,\ Mathfrak D,\ Mathfrak C $,我们将遇到两个新的红衣主教$ \Mathsfδ$和$ \ \ Mathsfσ$,该$ $ \ MATHSFσ$定义为$ω$上的最小重量结构的最小重量,该结构不包含离散的子空间,没有分离的设置,并且相应地分开了。我们证明了$ \ max \ {\ Mathfrak b,\ Mathfrak s,\ Mathrm {cov}(\ Mathcal n)\} \ le \ le \ le \mathsfδ\ le \ le \ le \mathsfσ\ le \ le \ le \ le \ le \ mathrm {non}(non}(non}(\ mathcal m),我们不知道costinals $ $ $ σ,\ mathrm {non}(\ mathcal m)$可以在合适的ZFC模型中分开。

In this paper we are interested in finding and evaluating cardinal characteristics of the continuum that appear in large-scale topology, usually as the smallest weights of coarse structures that belong to certain classes (indiscrete, inseparated, large) of finitary or locally finite coarse structures on $ω$. Besides well-known cardinals $\mathfrak b,\mathfrak d,\mathfrak c$ we shall encounter two new cardinals $\mathsf Δ$ and $\mathsf Σ$, defined as the smallest weight of a finitary coarse structure on $ω$ which contains no discrete subspaces and no asymptotically separated sets, respectively. We prove that $\max\{\mathfrak b,\mathfrak s,\mathrm{cov}(\mathcal N)\}\le\mathsf Δ\le\mathsf Σ\le\mathrm{non}(\mathcal M)$, but we do not know if the cardinals $\mathsf Δ,\mathsf Σ,\mathrm{non}(\mathcal M)$ can be separated in suitable models of ZFC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源