论文标题
广告黑洞的热力学曲率,深色能量
Thermodynamic curvature of AdS black holes with dark energy
论文作者
论文摘要
在本文中,我们通过对热力学几何形状的分析来研究黑洞在AD中的扩展热力学结构和相互作用的微观结构的影响。考虑各种限制案例的新型状态方程式在充电的黑色孔中以挑选的旋转旋转,并将焓$ h $作为扩展相空间中的关键潜力,我们仔细检查了Ruppeiner曲率标量$ r $在熵压力$(s,p)$ - 平面上(或在温度上等等)的行为($)。对$ r $的分析在经验上表明,通过$α$参数参数的暗能量显着改变了中性,充电和缓慢旋转的黑洞微结构的主要相互作用。在Schwarzschild-ads情况下:比一定尺寸小的黑洞继续具有吸引人的相互作用,而较大的黑洞完全由排斥相互作用占主导地位,这些相互作用是由于适当的暗能量而产生的。对于带电或旋转的带有精髓的黑洞,$ r $可以根据$α$与$ q $或Angular Momentum $ J $之间的关系来更改符号。特别是,高于$α$的阈值,$ r $根本不是负面的,这表明启发性地表明,由于精髓引起的排斥相互作用长期范围,而不是先前已知的短距离反击在带电的Ads黑洞中。提出了平均场相互作用的潜力,其极值有效地捕获了曲率$ r $变化符号的点。
In this paper, we study the effect of dark energy on the extended thermodynamic structure and interacting microstructures of black holes in AdS, through an analysis of thermodynamic geometry. Considering various limiting cases of the novel equation of state obtained in charged rotating black holes with quintessence, and taking enthalpy $H$ as the key potential in the extended phase space, we scrutinize the behavior of the Ruppeiner curvature scalar $R$ in the entropy-pressure $(S,P)$-plane (or equivalently in the temperature-volume ($T,V$)-plane). Analysis of $R$ empirically reveals that dark energy parameterized by $α$, significantly alters the dominant interactions of neutral, charged and slowly rotating black hole microstructures. In the Schwarzschild-AdS case: black holes smaller than a certain size continue to have attractive interactions whereas larger black holes are completely dominated by repulsive interactions which arise to due dark energy. For charged or rotating AdS black holes with quintessence, $R$ can change sign at multiple points depending upon the relation between $α$ and charge $q$ or angular momentum $J$. In particular, above a threshold value of $α$, $R$ is never negative at all, suggesting heuristically that the repulsive interactions due to quintessence are long ranged as opposed to the previously known short ranged repulsion in charged AdS black holes. A mean field interaction potential is proposed whose extrema effectively capture the points where the curvature $R$ changes sign.