论文标题
通过在多体量子系统中通过上的驱动器恢复连贯性
Restoring coherence via aperiodic drives in a many-body quantum system
论文作者
论文摘要
我们在其Mott阶段的一个维度上研究了随机或序列驱动的倾斜的玻色 - 哈伯(TBH)模型的统一动力学,从$ \ mathbb {z} _2 _2 $ symmetry-hrobkoken状态开始。随机性是在驱动器期间通过电报噪声协议实现的,而准周期性驱动器被选择以对应于Thue-Morse序列。已知的定期驱动的TBH模型(具有以时间段$ t $为特征的平方脉冲协议)表现出从具有长期相干振荡的动力学机制过渡到快速热化的人。在这里我们表明,从定期驱动器导致快速热化的制度开始,随机驱动器由随机的正方形脉冲序列组成,带有$ t+t+αdt$,其中$α= \ pm 1 $是随机数,$ dt $是噪声的振幅,恢复了长时间的相干振动,恢复了$ dt $ dt $ dt $ dt $ dt $ dt $的相干振动。在thue-morse序列之后,对于准周期驱动器,可以看到类似的现象,在$(t,dt)$ plane中,由于驱动器协议的附加结构,这种相干行为被证明在$(t,dt)$ plane中发生了较大的点。我们在存在此类杂技驱动器的情况下绘制了系统的动力学,对这种现象提供了定性的分析理解,指出了量子疤痕背后的作用,并讨论可以测试我们理论的实验。
We study the unitary dynamics of randomly or quasi-periodically driven tilted Bose-Hubbard (tBH) model in one dimension deep inside its Mott phase starting from a $\mathbb{Z}_2$ symmetry-broken state. The randomness is implemented via a telegraph noise protocol in the drive period while the quasi-periodic drive is chosen to correspond to a Thue-Morse sequence. The periodically driven tBH model (with a square pulse protocol characterized by a time period $T$) is known to exhibit transitions from dynamical regimes with long-time coherent oscillations to those with rapid thermalization. Here we show that starting from a regime where the periodic drive leads to rapid thermalization, a random drive, which consists of a random sequence of square pulses with period $T+αdT$, where $α=\pm 1$ is a random number and $dT$ is the amplitude of the noise, restores long-time coherent oscillations for special values of $dT$. A similar phenomenon can be seen for a quasi-periodic drive following a Thue-Morse sequence where such coherent behavior is shown to occur for a larger number of points in the $(T, dT)$ plane due to the additional structure of the drive protocol. We chart out the dynamics of the system in the presence of such aperiodic drives, provide a qualitative analytical understanding of this phenomenon, point out the role of quantum scars behind it, and discuss experiments which can test our theory.