论文标题
超平面上$ s_n $ -orbit的比例
The fraction of an $S_n$-orbit on a hyperplane
论文作者
论文摘要
Huang,McKinnon和Satriano猜想,如果$ v \ in \ Mathbb {r}^n $具有不同的坐标和$ n \ geq 3 $,则通过$ \ sum_i x_i = 0 $除以$ 2 \ lfloor n/2 \ lfloor n/2 \ rfloor(n/2 \ rfloor(n N/2), $ v $。我们证明了这个猜想。
Huang, McKinnon, and Satriano conjectured that if $v \in \mathbb{R}^n$ has distinct coordinates and $n \geq 3$, then a hyperplane through the origin other than $\sum_i x_i = 0$ contains at most $2\lfloor n/2 \rfloor (n-2)!$ of the vectors obtained by permuting the coordinates of $v$. We prove this conjecture.