论文标题

报告淤泥物体的有限性

Report on the finiteness of silting objects

论文作者

Aihara, Takuma, Honma, Takahiro, Miyamoto, Kengo, Wang, Qi

论文摘要

我们讨论(两项)淤积物体的有限性。首先,我们研究了新的三角类别,而无需淤积对象。其次,一个研究两类$τ$ - 替代代数,并给出其两项淤积物体的数量。最后,我们探索$τ$ tilting-finitesimentes nimententes nimentense表示代表finitiongatoin,并获得几类代数,其中$τ$ tisting-tilting-tilting-finite-finite代数代表限制。

We discuss the finiteness of (two-term) silting objects. First, we investigate new triangulated categories without silting object. Second, one studies two classes of $τ$-tilting-finite algebras and give the numbers of their two-term silting objects. Finally, we explore when $τ$-tilting-finiteness implies representatoin-finiteness, and obtain several classes of algebras in which a $τ$-tilting-finite algebra is representation-finite.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源