论文标题

金字塔生长

The pyramidal growth

论文作者

Gubeladze, Joseph

论文摘要

一个人可以通过迭代的金字塔将金字塔堆放到刻面上而不会在整个过程中失去凸度而从内部的任何多层构建任意多层?我们证明(i)3个polytopes,(ii)在某些无限的准准锥体弛豫下的4个polytopes确实可以做到这一点,并且(iii)渐近。动机部分来自我们对Monoid环理论的研究和某些离散符号对象的posets。

Can one build an arbitrary polytope from any polytope inside by iteratively stacking pyramids onto facets, without losing the convexity throughout the process? We prove that this is indeed possible for (i) 3-polytopes, (ii) 4-polytopes under a certain infinitesimal quasi-pyramidal relaxation, and (iii) all dimensions asymptotically. The motivation partly comes from our study of K-theory of monoid rings and of certain posets of discrete-convex objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源