论文标题

聚合物溶液中蒸发诱导的瑞利 - 泰勒不稳定性

Evaporation Induced Rayleigh-Taylor Instabilities in Polymer Solutions

论文作者

Mossige, E. J., Suja, V. Chandran, Islamov, M., Wheeler, S. F., Fuller, G. G.

论文摘要

在许多应用中,例如生产胶片涂层,了解干燥聚合物溶液中有害对流不稳定性的机制至关重要。众所周知,聚合物溶液中的溶剂蒸发会导致雷利 - 贝纳德或马龙诺型型不稳定性。在这里,我们揭示了另一种机制,即蒸发会导致界面由于在空气界面处堆积了密集的层而显示雷利 - 泰勒的不稳定性。我们通过实验研究不稳定性的发作时间($ t_p $)作为水性聚合物溶液的宏观特性的函数,我们通过改变聚合物浓度($ c_0 $),分子量和聚合物类型来调整。在稀释溶液中,$ t_p $根据聚合物扩散率显示了两种限制行为。对于高扩散性聚合物(低分子量),污染时间尺度为$ C_0^{ - 2/3} $。该结果与以前关于扩散稳定系统的混血系统中的重力不稳定性的研究一致。另一方面,在低扩散性聚合物中,羽毛时间缩放为$ C_0^{ - 1} $。有效的界面张力的稳定效应与不混溶体系中的张力相似,解释了这种浓度依赖性。在临界浓度之上,$ \ hat {c} $,粘度延迟了不稳定性的生长,从而使扩散的时间充当了主要的稳定机制。这将导致$ T_P $缩放为$(ν/C_0)^{2/3} $。

Understanding the mechanics of detrimental convective instabilities in drying polymer solutions is crucial in many applications such as the production of film coatings. It is well known that solvent evaporation in polymer solutions can lead to Rayleigh-Bénard or Marangoni-type instabilities. Here we reveal another mechanism, namely that evaporation can cause the interface to display Rayleigh-Taylor instabilities due to the build-up of a dense layer at the air-liquid interface. We study experimentally the onset time ($t_p$) of the instability as a function of the macroscopic properties of aqueous polymer solutions, which we tune by varying the polymer concentration ($c_0$), molecular weight and polymer type. In dilute solutions, $t_p$ shows two limiting behaviors depending on the polymer diffusivity. For high diffusivity polymers (low molecular weight), the pluming time scales as $c_0^{-2/3}$. This result agrees with previous studies on gravitational instabilities in miscible systems where diffusion stabilizes the system. On the other hand, in low diffusivity polymers the pluming time scales as $c_0^{-1}$. The stabilizing effect of an effective interfacial tension, similar to those in immiscible systems, explains this strong concentration dependence. Above a critical concentration, $\hat{c}$, viscosity delays the growth of the instability, allowing time for diffusion to act as the dominant stabilizing mechanism. This results in $t_p$ scaling as $(ν/c_0)^{2/3}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源