论文标题
数字纠缠和爱因斯坦 - 波多尔斯基 - 罗森转向
Number-phase entanglement and Einstein-Podolsky-Rosen steering
论文作者
论文摘要
我们使用与颗粒总数相关的操作员与两个骨模式的相对相之间的不确定性关系来构建纠缠和Einstein-Podolsky-Rosen-Rosen转向标准。 These can be tested experimentally in a variety of systems, such as optical fields, Bose-Einstein condensates or mechanical oscillators.虽然涉及可观察到的相的已知纠缠标准通常需要通过重新组合两个系统来执行干扰测量,但我们的标准可以通过在两个空间不同位置的局部测量进行测试,以研究量子相关性的非局部性性质。我们提出了违反条件的简单示例,并显示出它们对噪音的稳健性。除了对状态表征有用外,他们可能会在量子信息协议中找到应用,例如基于数字传送。
We use the uncertainty relation between the operators associated to the total number of particles and to the relative phase of two bosonic modes to construct entanglement and Einstein-Podolsky-Rosen steering criteria. These can be tested experimentally in a variety of systems, such as optical fields, Bose-Einstein condensates or mechanical oscillators. While known entanglement criteria involving the phase observable typically require to perform interference measurements by recombining the two systems, our criteria can be tested through local measurements at two spatially distinct positions, to investigate the nonlocal nature of quantum correlations. We present simple examples where our criteria are violated, and show their robustness to noise. Apart from being useful for state characterization, they might find application in quantum information protocols, for example based on number-phase teleportation.