论文标题
非最小耦合的玻尔兹曼方程I:基础
Nonminimally Coupled Boltzmann Equation I: Foundations
论文作者
论文摘要
我们在重力理论的背景下得出了玻尔兹曼方程,物质与曲率之间的非最小耦合。我们表明,由于在这些理论中不能保守能量量张量,因此它遵循了均匀分布函数的归一化条件。保留Boltzmann H理论,使得熵向量通量在这些理论中仍然是不稳定的函数。分析了同质和各向同性宇宙的情况。
We derive the Boltzmann equation in the context of a gravity theory with non-minimal coupling between matter and curvature. We show that as the energy-momentum tensor is not conserved in these theories, it follows a condition on the normalisation of an homogeneous distribution function. The Boltzmann H-theorem is preserved such that the entropy vector flux is still a non-decreasing function in these theories. The case of an homogeneous and isotropic Universe is analysed.