论文标题
特征值问题的第一级最小二乘配方
First order least-squares formulations for eigenvalue problems
论文作者
论文摘要
在本文中,我们讨论了与椭圆偏微分方程最小二乘有限元近似相关的操作员的光谱特性。研究并在适当的$ l^2 $错误估计的帮助下研究了离散特征值和特征函数对相应连续特征模的收敛性。证明了先验和后验估计。
In this paper we discuss spectral properties of operators associated with the least-squares finite element approximation of elliptic partial differential equations. The convergence of the discrete eigenvalues and eigenfunctions towards the corresponding continuous eigenmodes is studied and analyzed with the help of appropriate $L^2$ error estimates. A priori and a posteriori estimates are proved.