论文标题

Hitchin-Simpson方程的解决方案序列的行为

The behavior of sequences of solutions to the Hitchin-Simpson equations

论文作者

He, Siqi

论文摘要

Hitchin-Simpson方程是由连接和HIGGS字段组成的一对的一阶非线性方程。在本文中,我们研究了Hitchin-Simpson方程的解决方案序列的行为,其封闭的Kähler歧管具有无限的Higgs字段$ L^2 $规范。我们证明了连接和重新归一化的Higgs领域的紧凑性结果,该田地概括了Taubes和Mochizuki的工作。 作为应用程序,我们证明了Kähler歧管上的每一个$ \ mathbb {z}/2 $谐波1形,可以变形为Hitchin-Simpson方程的一系列解决方案。此外,我们在任何Kähler歧管上解决了广义Hitchin的WKB问题。

The Hitchin-Simpson equations are first-order non-linear equations for a pair consisting of a connection and a Higgs field. In this paper, we study the behavior of sequences of solutions to the Hitchin-Simpson equations on closed Kähler manifolds with unbounded $L^2$ norms of the Higgs fields. We prove a compactness result for the connections and renormalized Higgs fields, which generalizes the work of Taubes and Mochizuki. As applications, we prove that every $\mathbb{Z}/2$ harmonic 1-form on a Kähler manifold can be deformed into a sequence of solutions to the Hitchin-Simpson equations. Additionally, we solve the generalized Hitchin's WKB problem on any Kähler manifold.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源