论文标题

非自动进取对话框状态跟踪

Non-Autoregressive Dialog State Tracking

论文作者

Le, Hung, Socher, Richard, Hoi, Steven C. H.

论文摘要

对话状态跟踪(DST)的最新努力针对以任务为导向的对话进行了发展,已经朝着开放式或基于世代的方法进行了发展,模型可以从对话历史记录本身中产生插槽值候选者。这些方法显示出良好的性能增益,尤其是在具有动态插槽值的复杂对话域中。但是,它们在两个方面缺乏:(1)它们不允许模型在域和插槽上明确学习信号,以检测(域,插槽)对之间的潜在依赖关系; (2)现有模型遵循自动回归方法,当对话在多个域和多个转弯上演变时会产生高时间的成本。在本文中,我们提出了一个非自动向对话态跟踪(NADST)的新型框架,该框架可以考虑域和插槽之间的潜在依赖关系,以优化模型,以更好地预测对话状态作为完整的集合,而不是单独的插槽。特别是,我们方法的非自动性性质不仅可以平行地解码,从而显着减少了DST的潜伏期对实时对话响应的产生,而且还可以在插槽和域级别外检测插槽之间的依赖性。我们的经验结果表明,我们的模型达到了Multiwoz 2.1语料库上所有领域的最先进的关节准确性,并且我们模型的延迟比以前的艺术状态低一个数量级,因为对话历史随时间扩展。

Recent efforts in Dialogue State Tracking (DST) for task-oriented dialogues have progressed toward open-vocabulary or generation-based approaches where the models can generate slot value candidates from the dialogue history itself. These approaches have shown good performance gain, especially in complicated dialogue domains with dynamic slot values. However, they fall short in two aspects: (1) they do not allow models to explicitly learn signals across domains and slots to detect potential dependencies among (domain, slot) pairs; and (2) existing models follow auto-regressive approaches which incur high time cost when the dialogue evolves over multiple domains and multiple turns. In this paper, we propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST) which can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots. In particular, the non-autoregressive nature of our method not only enables decoding in parallel to significantly reduce the latency of DST for real-time dialogue response generation, but also detect dependencies among slots at token level in addition to slot and domain level. Our empirical results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus, and the latency of our model is an order of magnitude lower than the previous state of the art as the dialogue history extends over time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源