论文标题
物理学引导的模块化深度学习的基于PET图像中肿瘤分割的自动化框架
A Physics-Guided Modular Deep-Learning Based Automated Framework for Tumor Segmentation in PET Images
论文作者
论文摘要
这项研究的目的是开发一个PET肿瘤分割框架,该框架解决了有限的空间分辨率,高图像噪声以及缺乏宠物成像中具有地面肿瘤边界的临床训练数据的挑战。我们在每片肺癌患者的3D FDG-PET图像中分割原发性肿瘤的背景下,提出了一个三模块的宠物分割框架。第一个模块使用一种新的基于随机和物理学的方法生成含有高度逼真的肿瘤的PET图像,以解决训练数据的缺乏。第二个模块使用这些图像训练修改后的U-NET,帮助其学习肿瘤分割任务。第三个模块使用带有放射科医生定义的描绘的小型临床数据集作为替代地面真相,帮助该框架学习了在模拟肿瘤中可能错过的特征。该框架的准确性,对不同扫描仪的概括性,对部分体积效应(PVE)的敏感性以及减少训练图像数量的敏感性,使用骰子相似性系数(DSC)和其他几个指标对训练图像的数量进行了定量评估。该框架在模拟(DSC:0.87(95%CI:0.86,0.88))和患者图像(DSC:0.73(95%CI:0.71,0.76))中都产生了可靠的性能,超过了几种广泛使用的半自动化方法,准确地分割了相对小的thamors themorts smallepters crossement Served Served Served Served Served Served是1.83 cm.83 cmcm2 cmcm2 cmcm2 cmcm2 cm.83 cmcm2 cmcm2 cmcm2 cmcm2 cmcmand cmcm2 cmcm2。 (DSC:0.74),相对不受PVE的影响,需要低训练数据(使用30名患者的数据培训,DSC的DSC为0.70)。总之,提出的框架证明了在肺癌患者的FDG-PET图像中可靠的自动肿瘤描绘的能力。
The objective of this study was to develop a PET tumor-segmentation framework that addresses the challenges of limited spatial resolution, high image noise, and lack of clinical training data with ground-truth tumor boundaries in PET imaging. We propose a three-module PET-segmentation framework in the context of segmenting primary tumors in 3D FDG-PET images of patients with lung cancer on a per-slice basis. The first module generates PET images containing highly realistic tumors with known ground-truth using a new stochastic and physics-based approach, addressing lack of training data. The second module trains a modified U-net using these images, helping it learn the tumor-segmentation task. The third module fine-tunes this network using a small-sized clinical dataset with radiologist-defined delineations as surrogate ground-truth, helping the framework learn features potentially missed in simulated tumors. The framework's accuracy, generalizability to different scanners, sensitivity to partial volume effects (PVEs) and efficacy in reducing the number of training images were quantitatively evaluated using Dice similarity coefficient (DSC) and several other metrics. The framework yielded reliable performance in both simulated (DSC: 0.87 (95% CI: 0.86, 0.88)) and patient images (DSC: 0.73 (95% CI: 0.71, 0.76)), outperformed several widely used semi-automated approaches, accurately segmented relatively small tumors (smallest segmented cross-section was 1.83 cm2), generalized across five PET scanners (DSC: 0.74), was relatively unaffected by PVEs, and required low training data (training with data from even 30 patients yielded DSC of 0.70). In conclusion, the proposed framework demonstrated the ability for reliable automated tumor delineation in FDG-PET images of patients with lung cancer.