论文标题
旅游需求预测:合奏深度学习方法
Tourism Demand Forecasting: An Ensemble Deep Learning Approach
论文作者
论文摘要
与旅游相关的大数据的可用性增加了提高旅游需求预测准确性的潜力,但对预测提出了重大挑战,包括维度的诅咒和高模型的复杂性。提出了一种基于装袋的多元合奏深度学习方法,该方法整合了堆叠的自动编码器和基于内核的极限学习机器(B-sake),以应对本研究中的这些挑战。通过使用历史游客到达数据,经济变量数据和搜索强度指数(SII)数据,我们可以预测四个国家 /地区北京的旅游者。多种方案的一致结果表明,我们提出的B核对方法在水平准确性,方向准确性甚至统计学意义方面优于基准模型。装袋和堆叠的自动编码器都可以有效地减轻旅游大数据带来的挑战,并改善模型的预测性能。我们提出的合奏深度学习模式为旅游预测文学和利益相关的政府官员和旅游从业人员做出了贡献。
The availability of tourism-related big data increases the potential to improve the accuracy of tourism demand forecasting, but presents significant challenges for forecasting, including curse of dimensionality and high model complexity. A novel bagging-based multivariate ensemble deep learning approach integrating stacked autoencoders and kernel-based extreme learning machines (B-SAKE) is proposed to address these challenges in this study. By using historical tourist arrival data, economic variable data and search intensity index (SII) data, we forecast tourist arrivals in Beijing from four countries. The consistent results of multiple schemes suggest that our proposed B-SAKE approach outperforms benchmark models in terms of level accuracy, directional accuracy and even statistical significance. Both bagging and stacked autoencoder can effectively alleviate the challenges brought by tourism big data and improve the forecasting performance of the models. The ensemble deep learning model we propose contributes to tourism forecasting literature and benefits relevant government officials and tourism practitioners.