论文标题
通过有限距离解码,改进了最短矢量问题的经典和量子算法
Improved Classical and Quantum Algorithms for the Shortest Vector Problem via Bounded Distance Decoding
论文作者
论文摘要
晶格上最重要的计算问题是最短的向量问题(SVP)。在本文中,我们提出了新的算法,这些算法可以改善SVP的可证明的古典/量子算法的最新算法。我们提出以下结果。 $ \ bullet $用于SVP的新算法,在时间复杂性和内存要求之间提供平稳的权衡。对于任何正整数$ 4 \ leq q \ leq \ sqrt {n} $,我们的算法占用$ q^{13n+o(n)} $ time,并且需要$ poly(n)\ cdot q^{16n/q^2} $内存。这种权衡范围从枚举($ q = \ sqrt {n} $)到筛分($ q $ constant),这是由于平滑参数高于平滑参数的离散高斯采样的新的时间内存折衷的结果。 $ \ bullet $ A量子算法的SVP量子$ 2^{0.950n+O(n)} $,并且需要$ 2^{0.5n+O(n)} $经典内存和poly(n)Qubits。在量子随机访问内存(QRAM)模型中,此算法仅需$ 2^{0.835n+o(n)} $时间,并且需要大小$ 2^{0.293n+O(n)} $,poly(n)QRAM,poly(n)Qubits和$ 2^{0.5N} $经典空间。由于[ADRS15],它具有时间和空间复杂性$ 2^{n+o(n)} $,因此改进了以前最快的经典(也是最快的量子)算法。 $ \ bullet $ svp的经典算法$ 2^{1.669n+o(n)} $ time和$ 2^{0.5n+o(n)} $ space。这改进了具有相同空间复杂性的[CCL18]的算法。 我们的经典和量子算法的时间复杂性是使用与晶格接吻数量相关的已知上限获得的,该数量为$ 2^{0.402N} $。我们推测,对于大多数晶格,此数量为$ 2^{o(n)} $。假设是这种情况,我们的经典算法在时间上运行$ 2^{1.292n+o(n)} $,我们的量子算法$ 2^{0.750n+o(n)} $和我们的量子算法在QRAM模型中运行$ 2^{0.6667n+O(N)} $(N)。
The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum algorithms for SVP. We present the following results. $\bullet$ A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory requirement. For any positive integer $4\leq q\leq \sqrt{n}$, our algorithm takes $q^{13n+o(n)}$ time and requires $poly(n)\cdot q^{16n/q^2}$ memory. This tradeoff which ranges from enumeration ($q=\sqrt{n}$) to sieving ($q$ constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian sampling above the smoothing parameter. $\bullet$ A quantum algorithm for SVP that runs in time $2^{0.950n+o(n)}$ and requires $2^{0.5n+o(n)}$ classical memory and poly(n) qubits. In Quantum Random Access Memory (QRAM) model this algorithm takes only $2^{0.835n+o(n)}$ time and requires a QRAM of size $2^{0.293n+o(n)}$, poly(n) qubits and $2^{0.5n}$ classical space. This improves over the previously fastest classical (which is also the fastest quantum) algorithm due to [ADRS15] that has a time and space complexity $2^{n+o(n)}$. $\bullet$ A classical algorithm for SVP that runs in time $2^{1.669n+o(n)}$ time and $2^{0.5n+o(n)}$ space. This improves over an algorithm of [CCL18] that has the same space complexity. The time complexity of our classical and quantum algorithms are obtained using a known upper bound on a quantity related to the lattice kissing number which is $2^{0.402n}$. We conjecture that for most lattices this quantity is a $2^{o(n)}$. Assuming that this is the case, our classical algorithm runs in time $2^{1.292n+o(n)}$, our quantum algorithm runs in time $2^{0.750n+o(n)}$ and our quantum algorithm in QRAM model runs in time $2^{0.667n+o(n)}$.