论文标题
透视射手座矮人球形银河系的核心的深刻景色。 ii。恒星种群的运动学表征
A deep view into the nucleus of the Sagittarius Dwarf Spheroidal Galaxy with MUSE. II. Kinematic characterization of the stellar populations
论文作者
论文摘要
Sagittarius矮人球形星系(SGR DSPH)处于干扰的高级阶段,但仍位于其中心的核星簇(NSC)(NSC)。在本文中,我们介绍了M54中存在的三个恒星种群的详细运动学表征:年轻的金属富含(YMR);中级金属富含(IMR);和旧的金属贫困(OMP),基于$ \ sim6500 $的单个M54成员明星的光谱,该恒星从大型缪斯/VLT数据集中提取。我们发现,旋转量较低($ \ sim0.8 $ km s $^{ - 1} $),并且具有速度分散剂的旋转量略有平坦。 YMR总体显示大量旋转($ \ sim5 $ km s $^{ - 1} $)和高度的变平,具有较低和平坦的速度分散曲线。 IMR总体显示高而平坦的速度分散曲线,并具有一定程度的旋转($ \ sim2 $ km s $^{ - 1} $)。我们将缪斯数据与来自\ textit {gaia dr2}的信息相辅相成,并确认来自OMP和YMR种群的星星在3D空间中都在依次,这表明它们是动态绑定的。尽管动态进化效应(例如能量均衡)能够解释恒星种群之间速度分散的差异,但旋转的强大差异表明人群的不同地层路径,由$ n $ n $体型仿真量身定制,用于效果YMR-pomp系统。这项研究为我们以前的工作中提出的M54形成方案提供了更多证据,其中该NSC通过GC积聚(OMP)形成,并在旋转支持的碟片(YMR)中通过气体积聚形成。
The Sagittarius dwarf spheroidal galaxy (Sgr dSph) is in an advanced stage of disruption but still hosts its nuclear star cluster (NSC), M54, at its center. In this paper, we present a detailed kinematic characterization of the three stellar populations present in M54: young metal-rich (YMR); intermediate-age metal-rich (IMR); and old metal-poor (OMP), based on the spectra of $\sim6500$ individual M54 member stars extracted from a large MUSE/VLT dataset. We find that the OMP population is slightly flattened with a low amount of rotation ($\sim0.8$ km s$^{-1}$) and with a velocity dispersion that follows a Plummer profile. The YMR population displays a high amount of rotation ($\sim5$ km s$^{-1}$) and a high degree of flattening, with a lower and flat velocity dispersion profile. The IMR population shows a high but flat velocity dispersion profile, with some degree of rotation ($\sim2$ km s$^{-1}$). We complement our MUSE data with information from \textit{Gaia DR2} and confirm that the stars from the OMP and YMR populations are comoving in 3D space, suggesting that they are dynamically bound. While dynamical evolutionary effects (e.g. energy equipartition) are able to explain the differences in velocity dispersion between the stellar populations, the strong differences in rotation indicate different formation paths for the populations, as supported by an $N$-body simulation tailored to emulate the YMR-OMP system. This study provides additional evidence for the M54 formation scenario proposed in our previous work, where this NSC formed via GC accretion (OMP) and in situ formation from gas accretion in a rotationally supported disc (YMR).