论文标题

$ q $ binomial系数的两次持续型和椭圆扩展

Log-concavity results for a biparametric and an elliptic extension of the $q$-binomial coefficients

论文作者

Schlosser, Michael J., Senapati, Koushik, Uncu, Ali K.

论文摘要

我们为$ q $ numbers和$ q $ binmorial系数的两次扩展建立了离散和连续的对数covity结果。通过使用Jacobi Theta函数的经典结果,我们可以将我们的一些对数洞的结果提高到椭圆设置。我们的主要成分之一是推定的新引理,涉及Turán不平等的乘法类似物。

We establish discrete and continuous log-concavity results for a biparametric extension of the $q$-numbers and of the $q$-binomial coefficients. By using classical results for the Jacobi theta function we are able to lift some of our log-concavity results to the elliptic setting. One of our main ingredients is a putatively new lemma involving a multiplicative analogue of Turán's inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源