论文标题
来自Hololens Triangle网格的基于体素的室内重建
Voxel-Based Indoor Reconstruction From HoloLens Triangle Meshes
论文作者
论文摘要
当前的移动增强现实设备通常配备范围传感器。例如,Microsoft Hololens配备了飞行时间(TOF)范围摄像机,可提供可在自定义应用程序中使用的粗三角形网格。我们建议将三角网格用于自动生成室内模型,这些模型可以作为扩大其物理与位置相关信息的基础。在本文中,我们提出了一种基于体素的新方法,用于从三维几何形状(如三角形网格)中使用的自动化室内重建。在对输入数据进行初始的体素化后,通过分割候选天花板候选的连接的素素组件并将其向下挤压以找到候选候选者,从而在所得的体素网格中检测到了房间。然后通过基于规则的Voxel扫描算法将语义类标签诸如“墙”,“墙壁开口”,“内部对象”和“空内部”等标签分配给天花板和地板之间的房间素。最后,检测到的墙壁及其开口的几何形状在体素表示中进行了完善。拟议的方法不仅限于曼哈顿世界情景,也不依赖于平面的房间表面。
Current mobile augmented reality devices are often equipped with range sensors. The Microsoft HoloLens for instance is equipped with a Time-Of-Flight (ToF) range camera providing coarse triangle meshes that can be used in custom applications. We suggest to use the triangle meshes for the automatic generation of indoor models that can serve as basis for augmenting their physical counterpart with location-dependent information. In this paper, we present a novel voxel-based approach for automated indoor reconstruction from unstructured three-dimensional geometries like triangle meshes. After an initial voxelization of the input data, rooms are detected in the resulting voxel grid by segmenting connected voxel components of ceiling candidates and extruding them downwards to find floor candidates. Semantic class labels like 'Wall', 'Wall Opening', 'Interior Object' and 'Empty Interior' are then assigned to the room voxels in-between ceiling and floor by a rule-based voxel sweep algorithm. Finally, the geometry of the detected walls and their openings is refined in voxel representation. The proposed approach is not restricted to Manhattan World scenarios and does not rely on room surfaces being planar.