论文标题

关于高阶差异不平等解决方案的可移动奇异性

On removable singularities of solutions of higher order differential inequalities

论文作者

Kon'kov, A. A., Shishkov, A. E.

论文摘要

我们获得了足够的条件,以解决$ m $ th级差异不平等的解决方案$$ \ sum_ {|α| = M} \ partial^αA_α(x,u) \ ge f(x)g(| u |) \ Quad \ mbox {in} b_1 \ setMinus \ {0 \} $ $在零处具有可移动的奇异性,其中$a_α$,$ f $和$ g $是某些功能,而$ b_1 = \ {x:x:| x:| x | | | x | <1 \} $是$ {\ mathbb r}^n $中的单位球。 构造的例子证明了这些条件的确切性。

We obtain sufficient conditions for solutions of the $m$th-order differential inequality $$ \sum_{|α| = m} \partial^αa_α(x, u) \ge f (x) g (|u|) \quad \mbox{in } B_1 \setminus \{ 0 \} $$ to have a removable singularity at zero, where $a_α$, $f$, and $g$ are some functions, and $B_1 = \{ x : |x| < 1 \}$ is a unit ball in ${\mathbb R}^n$. Constructed examples demonstrate the exactness of these conditions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源