论文标题
bi-slant $ξ^{\ perp} $ - riemannian淹没
Bi-slant $ξ^{\perp}$-Riemannian submersions
论文作者
论文摘要
我们将来自Sasakian歧管的Riemannian淹没介绍给Riemannian歧管,作为Riemannian歧管,作为倾斜和半斜型$ξ^{\ perp} $ - riemannian sismersion的概括。我们举一个例子并研究几何叶。在获得与浸没的完全测量相关的必要条件之后。最后,我们给出了这种浸入的总歧管的分解定理。
We introduce bi-slant $ξ^{\perp}$-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds as a generalization of slant and semi-slant $ξ^{\perp}$-Riemannian submersion. We give an example and investigate the geometry foliations. After we obtain necessary and sufficient conditions related to totally geodesicness of submersion. Finally we give decomposition theorems for total manifold of such submersions.