论文标题

bi-slant $ξ^{\ perp} $ - riemannian淹没

Bi-slant $ξ^{\perp}$-Riemannian submersions

论文作者

Sepet, Sezin Aykurt

论文摘要

我们将来自Sasakian歧管的Riemannian淹没介绍给Riemannian歧管,作为Riemannian歧管,作为倾斜和半斜型$ξ^{\ perp} $ - riemannian sismersion的概括。我们举一个例子并研究几何叶。在获得与浸没的完全测量相关的必要条件之后。最后,我们给出了这种浸入的总歧管的分解定理。

We introduce bi-slant $ξ^{\perp}$-Riemannian submersions from Sasakian manifolds onto Riemannian manifolds as a generalization of slant and semi-slant $ξ^{\perp}$-Riemannian submersion. We give an example and investigate the geometry foliations. After we obtain necessary and sufficient conditions related to totally geodesicness of submersion. Finally we give decomposition theorems for total manifold of such submersions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源