论文标题

常规稀疏抗魔法正方形的结构

Constructions of regular sparse anti-magic squares

论文作者

Chen, Guangzhou, Li, Wen, Zhong, Ming, Xin, Bangying

论文摘要

图形标记是图理论中众所周知且经过深入研究的问题。稀疏的抗魔法正方形可用于构建图形顶点魔术标记。对于积极的整数$ n,d $和$ d <n $,a $ n \ times n $ array $ a $ a $基于$ \ {0,1,\ cdots,nd \} $称为\ emph {用密度$ d $}稀疏的反魔术$ n $ of conders $ n $},sams $(n,n,d)$(n,d) $ \ {1,2,\ cdots,nd \} $正好出现$ a $的一个条目,其行-SUMS,列和两个主对角和两个构成了一组$ 2N+2 $连续的整数。如果在每行,每一列和每个主角的$ d $正分段中完全存在$ d $正面条目,则为SAMS $(n,d)$称为\ emph {常规}。在本文中,我们研究了定期稀疏的抗魔法正方形$ n \ equiv1,5 \ pmod 6 $,并且证明对于任何$ n \ equiv1,5 \ pmod 6 $,存在常规的SAMS $(n,d)$,并且只有$ 2 \ leq D \ leq D \ leq d \ leq leq n-1 $。

Graph labeling is a well-known and intensively investigated problem in graph theory. Sparse anti-magic squares are useful in constructing vertex-magic labeling for graphs. For positive integers $n,d$ and $d<n$, an $n\times n$ array $A$ based on $\{0,1,\cdots,nd\}$ is called \emph{a sparse anti-magic square of order $n$ with density $d$}, denoted by SAMS$(n,d)$, if each element of $\{1,2,\cdots,nd\}$ occurs exactly one entry of $A$, and its row-sums, column-sums and two main diagonal sums constitute a set of $2n+2$ consecutive integers. An SAMS$(n,d)$ is called \emph{regular} if there are exactly $d$ positive entries in each row, each column and each main diagonal. In this paper, we investigate the existence of regular sparse anti-magic squares of order $n\equiv1,5\pmod 6$, and it is proved that for any $n\equiv1,5\pmod 6$, there exists a regular SAMS$(n,d)$ if and only if $2\leq d\leq n-1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源