论文标题

使用沉浸式虚拟现实和可解释的深度学习来解码行人和自动化的车辆互动

Decoding pedestrian and automated vehicle interactions using immersive virtual reality and interpretable deep learning

论文作者

Kalatian, Arash, Farooq, Bilal

论文摘要

为了确保自动车辆时代的行人友好的街道,重新评估当前的政策,实践,设计,规则和城市地区规定是重要的。这项研究调查了行人交叉行为,这是城市动力学的重要因素,预计会受自动车辆的存在影响。为此,提出了一个可解释的机器学习框架,以探索影响行人等待时间的因素,然后在自动化车辆的存在下越过中间的人行横道。为了收集丰富的行为数据,我们开发了一个动态和身临其境的虚拟现实实验,来自大多伦多地区(GTA)4个不同地点的非均质人群的180名参与者。然后使用数据驱动的COX比例危害(CPH)模型分析行人等待时间行为,其中协变量的线性组合被灵活的非线性深神经网络所取代。拟议的模型的拟合度提高了5%,但更重要的是,使我们能够融合一组更丰富的协变量。一种基于游戏理论的可解释性方法用于了解不同协变量对时间行人在越过之前等待的贡献。结果表明,在道路上存在自动车辆,宽阔的车道宽度,道路上的高密度,有限的视线距离以及缺乏步行习惯是延长等待时间的主要因素。我们的研究表明,要迈向对行人友好的城市地区,国家一级的儿童教育计划,增强的老年人安全措施,促进主动交通方式以及修订的交通规则和法规。

To ensure pedestrian friendly streets in the era of automated vehicles, reassessment of current policies, practices, design, rules and regulations of urban areas is of importance. This study investigates pedestrian crossing behaviour, as an important element of urban dynamics that is expected to be affected by the presence of automated vehicles. For this purpose, an interpretable machine learning framework is proposed to explore factors affecting pedestrians' wait time before crossing mid-block crosswalks in the presence of automated vehicles. To collect rich behavioural data, we developed a dynamic and immersive virtual reality experiment, with 180 participants from a heterogeneous population in 4 different locations in the Greater Toronto Area (GTA). Pedestrian wait time behaviour is then analyzed using a data-driven Cox Proportional Hazards (CPH) model, in which the linear combination of the covariates is replaced by a flexible non-linear deep neural network. The proposed model achieved a 5% improvement in goodness of fit, but more importantly, enabled us to incorporate a richer set of covariates. A game theoretic based interpretability method is used to understand the contribution of different covariates to the time pedestrians wait before crossing. Results show that the presence of automated vehicles on roads, wider lane widths, high density on roads, limited sight distance, and lack of walking habits are the main contributing factors to longer wait times. Our study suggested that, to move towards pedestrian-friendly urban areas, national level educational programs for children, enhanced safety measures for seniors, promotion of active modes of transportation, and revised traffic rules and regulations should be considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源