论文标题

调查对基于步行的图形嵌入的扩展

Investigating Extensions to Random Walk Based Graph Embedding

论文作者

Schloetterer, Joerg, Wehking, Martin, Rizi, Fatemeh Salehi, Granitzer, Michael

论文摘要

最近在研究界,尤其是在引入随机步行和基于神经网络的方法之后,嵌入图。但是,大多数嵌入方法都集中在表示节点的局部邻域,而无法捕获全局图结构,即保留与遥远节点的关系。为了解决这个问题,我们提出了一个新的扩展到基于随机步行的图形嵌入,该图可以从不同级别的步行中去除最不常见的节点的百分比。通过此删除,我们模拟了更远的节点,以驻留在节点的近社区,因此明确表示它们的连接。除了用于图形嵌入的常见评估任务(例如节点分类和链接预测)外,我们还评估并将方法与最短路径近似相关方法进行比较。结果表明,扩展基于随机步行的方法(包括我们自己的)仅略微改善预测性能(如果有的话)。

Graph embedding has recently gained momentum in the research community, in particular after the introduction of random walk and neural network based approaches. However, most of the embedding approaches focus on representing the local neighborhood of nodes and fail to capture the global graph structure, i.e. to retain the relations to distant nodes. To counter that problem, we propose a novel extension to random walk based graph embedding, which removes a percentage of least frequent nodes from the walks at different levels. By this removal, we simulate farther distant nodes to reside in the close neighborhood of a node and hence explicitly represent their connection. Besides the common evaluation tasks for graph embeddings, such as node classification and link prediction, we evaluate and compare our approach against related methods on shortest path approximation. The results indicate, that extensions to random walk based methods (including our own) improve the predictive performance only slightly - if at all.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源