论文标题
涵盖组合过滤器及其最小化问题(扩展版本)
Cover Combinatorial Filters and their Minimization Problem (Extended Version)
论文作者
论文摘要
最近的研究检查了算法,以最大程度地减少机器人的资源足迹。已经研究了组合过滤器(广泛使用的概率估计器的离散变体)和减少其空间需求的方法。本文通过引入我们配音覆盖组合过滤器的自然概括来扩展现有的组合过滤器。在解决新的(但仍然是NP完整)的最小化覆盖过滤器的问题时,本文表明,以前认为对组合过滤器的多个概念(实际上是猜想,声称或假定是)实际上是错误的。例如,最小化不会引起等价关系。我们为盖滤滤滤器最小化问题提供了精确的算法。与先前的工作(基于图形着色)不同,我们考虑了一种涉及新条件约束的集团覆盖问题,我们可以从中找到更多的一般关系。除了解决更通用的问题外,该算法还纠正了所有先前的滤波器减少方法中存在的缺陷。在使用SAT时,该算法为未来的实际发展提供了有希望的基础。
Recent research has examined algorithms to minimize robots' resource footprints. The class of combinatorial filters (discrete variants of widely-used probabilistic estimators) has been studied and methods for reducing their space requirements introduced. This paper extends existing combinatorial filters by introducing a natural generalization that we dub cover combinatorial filters. In addressing the new -- but still NP-complete -- problem of minimization of cover filters, this paper shows that multiple concepts previously believed to be true about combinatorial filters (and actually conjectured, claimed, or assumed to be) are in fact false. For instance, minimization does not induce an equivalence relation. We give an exact algorithm for the cover filter minimization problem. Unlike prior work (based on graph coloring) we consider a type of clique-cover problem, involving a new conditional constraint, from which we can find more general relations. In addition to solving the more general problem, the algorithm also corrects flaws present in all prior filter reduction methods. In employing SAT, the algorithm provides a promising basis for future practical development.