论文标题

Cantor-Schröder-Bernstein定理$ \ infty $ groupoids

The Cantor-Schröder-Bernstein Theorem for $\infty$-groupoids

论文作者

Escardó, Martín Hötzel

论文摘要

我们表明,Cantor-Schröder-Bernstein定理用于同型类型,或$ \ infty $ groupoids以以下形式保持:对于任何两种类型,如果每种类型都嵌入了另一个类型,则它们是等效的。该论点是用同质类型理论的语言或Voevodsky的单价基础(HOTT/UF)开发的,需要经典的逻辑。因此,该定理在任何布尔$ \ infty $ -TOPOS中都包含。

We show that the Cantor-Schröder-Bernstein Theorem for homotopy types, or $\infty$-groupoids holds in the following form: For any two types, if each one is embedded into the other, then they are equivalent. The argument is developed in the language of homotopy type theory, or Voevodsky's univalent foundations (HoTT/UF), and requires classical logic. It follows that the theorem holds in any boolean $\infty$-topos.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源